

Purpose of Meeting

1. Stimulate Existing & Initiate New Partnerships; Assess Partner Readiness & Identify Assets

- a. scientist engagement
- b. space hardware & associated data streams
- c. high quality validation supersites & associated data streams
- d. high quality regional raingage networks & associated data streams
- e. additional precipitation & ancillary data streams

2. Exchange Information on Major Scientific Objectives

3. Discuss Critical Engineering & Technical Issues

- a. orbit architecture
- **b.** radiometer frequencies
- c. general algorithm design
- d. radiation-cloud modeling
- e. design & focus of validation system

GPM's Key Science Theme

Global Water & Energy Cycle

- GOAL: Observe, understand, & model Earth system to learn how it is changing, & consequences for life on Earth.
- SOLUTION: Establish existence (or absence) of trend in rate of global water cycle -- acceleration would lead to faster evaporation, increased global average precipitation, & general increase in extremes, particularly droughts & floods.

GPM will extend TRMM's observations of rainfall rates to higher latitudes thus yielding more complete and accurate representation of global water cycle.

Advanced rainfall measurement core satellite will make detailed & accurate estimates of precipitation structure & microphysical properties -- while constellation of drone satellites flying passive microwave radiometers will provide required temporal sampling of highly variable precipitation systems.

Uncertainty in global tropical rainfall estimates has been reduced from 50% to 25% using TRMM data

Global Water Budget & Water Cycle

General Equation

GPM

$$S = P - E - DIV - RO$$

Oceanic Water Budget

total water tendency (vapor or cloud water)

3D vapor or cloud water divergence

evaporation sublimation

condensation deposition

vertical divergence of vertical eddy transport of vapor or cloud water

$$\check{\mathbf{Z}}\overline{\mathbf{q}_{v}(\mathbf{p})} / \check{\mathbf{Z}}\mathbf{t} = -\nabla \bullet \overrightarrow{\check{\mathbf{V}}}(\mathbf{p}) \mathbf{q}_{v}(\mathbf{p}) - \check{\mathbf{Z}}\overline{\omega \mathbf{q}_{v}(\mathbf{p})} / \check{\mathbf{Z}}\mathbf{p}$$

$$+ \overline{\mathbf{e}(\mathbf{p})}$$

$$- \quad \overline{\mathbf{C}(\mathbf{b})}$$

$$\check{Z}\,\overline{[q_{V}(p)']\;\omega(p)'}\,/\,\check{Z}\!p$$

$$\check{Z}\overline{q_{W}\left(p\right)}\,/\,\check{Z}_{t}\;=-\nabla\bullet\,\overline{\check{V}\!\left(p\right)\,q_{c}\left(p\right)}\;-\;\check{Z}\overline{\omega_{c}\,q_{c}\left(p\right)}\,/\,\check{Z}_{p}$$

$$- \overline{\mathbf{e}(\mathbf{p})} + \overline{\mathbf{c}(\mathbf{p})}$$

$$\check{Z}\,\overline{[q_{\!_{\boldsymbol{V}}}(p)^{\scriptscriptstyle\prime}]\;\omega_{c}(p)^{\scriptscriptstyle\prime}}\,/\,\check{Z}\!p$$

$$\overline{W_t} = -$$

$$= \quad - \quad \overline{\overrightarrow{U}} \bullet \nabla W \quad - \quad \overline{\overrightarrow{U}} \bullet \nabla W_c$$

$$\overline{\overrightarrow{U} \bullet \nabla \ W_c}$$

column vapor & cloud water storage

vapor advection cloud water advection

evaporation

 $\overline{\mathbf{E}}$

precipitation

 $\overline{\mathbf{P}}$

Continental Water Budget -- Not Same Problem

$$\overline{\mathbf{S}}$$

 $= - \overline{\overrightarrow{\mathbf{U}} \bullet \nabla \mathbf{q_l}}$

- RO - BF

P

 $\overline{\mathbf{E}}$

soil moisture/ surface water/ surface snow/ice storage

interflow (water advection) [bulldozers] [dump trucks] [nuclear bombs] [continental drift] surface runoff & base flow & recharge

precipitation deposition tree leaf-needle drip canopy snow blowoff

evaporation [ground/leaf/snow] transpiration or ET sublimation

NASA ESE Strategy for Earth System Science

Forces Acting on Earth

System

Climate Feedback

Earth
System
Response

Impacts

How is Earth changing & what are consequences for life on Earth?

- 1. How is global Earth system changing?
- 2. What are primary causes of change of Earth system?
- 3. How does Earth system respond to natural & human-induced changes?
- 4. What are consequences of change in Earth system for human civilization?
- 5. How well can future changes in Earth system be predicted?

GPM's
Nine (9)
Science
Discipline
Areas

- (1) Climate Diagnostics: refining & extending precipitation climatologies including snow climatologies; detecting statistically significant global & regional precipitation trends
- (2) Global Water & Energy Cycle / Hydrological Predictability: global water & energy cycle (GWEC) analysis & modeling; water transports; water budget closure; hydrometeorological modeling; fresh water resources prediction
- (3) Climate Change / Climate Predictability: climatewater-radiation states; climate-change analysis & prediction; GWEC response to climate change & feedback;
- (4) Data Assimilation / Weather & Storms Predictability: rainfall data assimilation; global-regional scale NWP techniques
- (5) MBL Processes: air-sea interface processes & surface flux modeling; ocean mixed layer salinity changes
- (6) Land Processes: land-atmosphere interface processes & surface flux modeling; integrated surface radiation-energy-water-carbon budget process modeling
- (7) Coupled Cloud-Radiation Models: diagnosis of cloud dynamics, macrophysical/microphysical processes, & response of 3D radiation field; parameterizing microphysics & radiative transfer in nonhydrostatic mesoscale cloud resolving models
- (8) Retrieval/Validation/Synthesis: physical retrieval of precipitation & latent heating; algorithm calibration & products normalization; algorithm validation & quantification of uncertainty; synthesis of validation for algorithm improvement
- (9) Applications/Outreach: weather forecasting; flash flood forecasting; news media products; educational tools

GPM Reference Concept

OBJECTIVE: Understand Horizontal & Vertical Structure of Rainfall & Its Microphysical Nature. Train & Calibrate Algorithms for Constellation Radiometers.

OBJECTIVE: Provide Sufficient Sampling to Reduce Uncertainty in Short-term Rainfall Accumulations. Extend Scientific and Societal Applications.

Core Satellite

- TRMM-Like S/C, NASA
- H2A Launch, NASDA
- Non-Sun Synchronous Orbit
 - ~ 65° Inclination
 - ~450 km Altitude
- Dual Frequency Radar, NASDA Ku & Ka Bands
 - ~ 4 km Horizontal Resolution
 - ~250 m Vertical Resolution
- Multifrequency Radiometer, NASA 10.7. 19. 22. 37. 85 GHz V&H Pol

Constellation Satellites

- Dedicated Small or Pre-existing Experimental & Operational Satellites with PMW
 Radiometers
- Revisit Time
 - 3-Hour goal
- Sun-Synchronous Polar Orbits ~600 km Altitude

Precipitation Validation Sites

• Selected & Globally Distributed Ground- Based Supersites (polarimetric radar, radiometer, raingages, & disdrometers) & Dense Regional Raingage Networks

Global Precipitation <u>Processing</u> Center

• Produces Global Precipitation Data Product Streams Defined by GPM Partners

TRMM 1-day coverage

TRMM Era Constellation Coverage

3-hour sensor ground trace

TRMM + DMSP(F14) + DMSP(F15)

EOS Era Constellation Coverage

3-hour sensor ground trace

TRMM + DMSP(F15) + DMSP(F16) + AQUA + ADEOS II

GPM Systematic Measurement Coverage (Core + 6 constellation members)

3-hour sensor ground trace

GPM Core + MEGHA-TROP + DMSP(F18) + DMSP(F19) + GCOM-B1 + NASA-GPM I + Euro-GPM I & II + Partner-GPM I & II

Global Precip itation Mission (GPM) Purpose

- 1. Measure Rainfall Accurately, Globally, & Often
- 2. Stimulate GWC Research Across Scale Spectrum
- 3. Underwrite Compelling Rainfall-Based Applications
- 4. Improve Space Tehnology for Rainfal & Synergistic Measurements
- 5. Ddiver Refective Education/Media/Commercial Outreach Program

Better Rain Measuring	Better Sampling	Better Methodologies
DSD-c entric with physical validation	constellation design & ŒO data infusion	marriage of measurements & prediction models

Overarching Science & Technology Goals

Technology

- advance multiparameter rain ralarinstruments
- advance SA/RA rain radiometer instruments
- move toward operational spacebased rain measuring system

Research

- understand & quantify
 GWC dynamics & variability of atmos-bio-cryo-hydro-spheres
- seek dosure of mass-energy budgets at basin scales
- understand relationships
 between GWC& climate
 and underlying predictability

Applications

- improveQPF of landfalling TCs & MLCs
- improveflash flood forecasts of alpine storms
- improveprediction of fresh water resources

